
RTC_ADA_DS3231

The datasheet for the DS3231 explains that this part is an "Extremely Accurate I²C-Integrated RTC/
TCXO/Crystal". And, hey, it does exactly what it says on the tin! This Real Time Clock (RTC) is
the most precise you can get in a small, low power package.

Most RTC's use an external 32kHz timing crystal that is used to keep time with low current draw.
And that's all well and good, but those crystals have slight drift, particularly when the temperature

https://learn.adafruit.com/assets/30357
https://learn.adafruit.com/assets/30360

changes (the temperature changes the oscillation frequency v

ery very very slightly but it does add
up!) This RTC is in a beefy package because the crystal is inside the chip! And right next to the
integrated crystal is a temperature sensor. That sensor compensates for the frequency changes by
adding or removing clock ticks so that the timekeeping stays on schedule

This is the finest RTC you can get, and now we have it in a compact, breadboard-friendly breakout.
With a coin cell plugged into the back, you can get years of precision timekeeping, even when main
power is lost. Great for datalogging and clocks, or anything where you need to really know the time.

Comes as a fully assembled and tested breakout plus a small piece of header. You can solder header
in to plug it into a breadboard, or solder wires directly.

https://learn.adafruit.com/assets/30358
https://learn.adafruit.com/assets/30359

A coin cell is required to use the battery-backup capabilities! We don't include one by default, to
make shipping easier for those abroad, but we do stock them so pick one up or use any CR1220 you
have handy.

Pinouts

Power Pins:
• Vin - this is the power pin. Since the RTC can be powered from 2.3V to 5.5V power, you do

not need a regulator or level shifter for 3.3V or 5V logic/power. To power the board, give it
the same power as the logic level of your microcontroller - e.g. for a 5V micro like Arduino,
use 5V

• GND - common ground for power and logic

I2C Logic pins:
• SCL - I2C clock pin, connect to your microcontrollers I2C clock line. This pin has a 10K

pullup resistor to Vin
• SDA - I2C data pin, connect to your microcontrollers I2C data line. This pin has a 10K

pullup resistor to Vin

Other Pins:
• BAT - this is the same connection as the positive pad of the battery. You can use this if you

want to power something else from the coin cell, or provide battery backup from a different

https://learn.adafruit.com/assets/30348

separate batery. VBat can be between 2.3V and 5.5V and the DS3231 will switch over when
main Vin power is lost

• 32K - 32KHz oscillator output. Open drain, you need to attach a pullup to read this signal
from a microcontroller pin

• SQW - optional square wave or interrupt output. Open drain, you need to attach a pullup to
read this signal from a microcontroller pin

• RST - This one is a little different than most RST pins, rather than being just an input, it is
designed to be used to reset an external device or indicate when main power is lost. Open
drain, but has an internal 50K pullup. The pullup keeps this pin voltage high as long as Vin
is present. When Vin drops and the chip switches to battery backup, the pin goes low.

Arduino Usage
You can easily wire this breakout to any microcontroller, we'll be using an Arduino. For another
kind of microcontroller, just make sure it has I2C, then port the code - its pretty simple stuff!

Oops i removed the Power wire from 5V to the Vin rail before taking this pic, don't forget it!

• Connect Vin to the power supply, 3-5V is fine. Use the same voltage that the microcontroller
logic is based off of. For most Arduinos, that is 5V

• Connect GND to common power/data ground
• Connect the SCL pin to the I2C clock SCL pin on your Arduino. On an UNO & '328 based

Arduino, this is also known as A5, on a Mega it is also known as digital 21 and on a
Leonardo/Micro, digital 3

https://learn.adafruit.com/assets/30350

• Connect the SDA pin to the I2C data SDA pin on your Arduino. On an UNO & '328 based
Arduino, this is also known as A4, on a Mega it is also known as digital 20 and on a
Leonardo/Micro, digital 2

The DS3231 has a default I2C address of 0x68 and cannot be changed

Download RTCLib
For the RTC library, we'll be using a fork of JeeLab's excellent RTC library RTClib - a library for
getting and setting time from an RTC (originally written by JeeLab, our version is slightly different
so please only use ours to make sure its compatible!)

To begin reading data, you will need to download Adafruit's RTCLib from the Arduino library
manager.

Open up the Arduino library manager:

Search for the RTCLib library and install the one by Adafruit

We also have a great tutorial on Arduino library installation at:
http://learn.adafruit.com/adafruit-all-about-arduino-libraries-install-use

First RTC Test
The first thing we'll demonstrate is a test sketch that will read the time from the RTC once per
second. We'll also show what happens if you remove the battery and replace it since that causes the
RTC to halt. So to start, remove the battery from the holder while the Arduino is not powered or
plugged into USB. Wait 3 seconds and then replace the battery. This resets the RTC chip.

https://learn.adafruit.com/assets/84220
https://learn.adafruit.com/assets/84221

Load Demo
Open up File->Examples->RTClib->ds3231 and upload to your Arduino wired up to the RTC

Upload to your Arduino and check the serial console @ 9600 baud. After a few seconds, you'll see
the report that the Arduino noticed this is the first time the DS3231 has been powered up, and will
set the time based on the Arduino sketch.

https://learn.adafruit.com/assets/30351
https://learn.adafruit.com/assets/30352

Unplug your Arduino plus RTC for a few seconds (or minutes, or hours, or weeks) and plug back in.

Next time you run it you won't get the same "RTC lost power" message, instead it will come
immediately and let you know the correct time!

From now on, you wont have to ever set the time again: the battery will last 5 or more years.

https://learn.adafruit.com/assets/30353
https://learn.adafruit.com/assets/30354

Reading the Time
Now that the RTC is merrily ticking away, we'll want to query it for the time. Lets look at the sketch
again to see how this is done.

void loop () { DateTime now = rtc.now(); Serial.print(now.year(),
DEC); Serial.print('/'); Serial.print(now.month(), DEC);
Serial.print('/'); Serial.print(now.day(), DEC); Serial.print(" (");
Serial.print(daysOfTheWeek[now.dayOfTheWeek()]); Serial.print(") ");
Serial.print(now.hour(), DEC); Serial.print(':');
Serial.print(now.minute(), DEC); Serial.print(':');
Serial.print(now.second(), DEC); Serial.println();

There's pretty much only one way to get the time using the RTClib, which is to call now(), a
function that returns a DateTime object that describes the year, month, day, hour, minute and second
when you called now().

There are some RTC libraries that instead have you call something like RTC.year() and
RTC.hour() to get the current year and hour. However, there's one problem where if you happen to
ask for the minute right at 3:14:59 just before the next minute rolls over, and then the second right
after the minute rolls over (so at 3:15:00) you'll see the time as 3:14:00 which is a minute off. If
you did it the other way around you could get 3:15:59 - so one minute off in the other direction.

Because this is not an especially unlikely occurrence - particularly if you're querying the time pretty
often - we take a 'snapshot' of the time from the RTC all at once and then we can pull it apart into
day() or second() as seen above. Its a tiny bit more effort but we think its worth it to avoid
mistakes!

We can also get a 'timestamp' out of the DateTime object by calling unixtime which counts the
number of seconds (not counting leapseconds) since midnight, January 1st 1970

Serial.print(" since midnight 1/1/1970 = ");
Serial.print(now.unixtime()); Serial.print("s = ");
Serial.print(now.unixtime() / 86400L); Serial.println("d");

Since there are 60*60*24 = 86400 seconds in a day, we can easily count days since then as well.
This might be useful when you want to keep track of how much time has passed since the last
query, making some math a lot easier (like checking if its been 5 minutes later, just see if
unixtime() has increased by 300, you dont have to worry about hour changes).

	Pinouts
	Power Pins:
	I2C Logic pins:
	Other Pins:

	Arduino Usage
	Download RTCLib
	First RTC Test
	Load Demo
	Reading the Time

